setting up boblight with a Raspberry Pi and RaspBMC

Some might know AmbiLight – a great invention by Philips that projects colored light around a TV screen based upon the contents shown. It’s a great addition to a TV but naturally only available with Philips TV sets.

Not anymore. There are several open-source projects that allow you to build your very own AmbiLight clone. I’ve built one using a 50-LEDs WS2801 stripe, a 5V/10A power supply, a RaspberryPi, and the BobLight integration in RaspBMC (this is a nice XBMC distribution for the Pi).

Boblight is a collection of tools for driving lights connected to an external controller.

Its main purpose is to create light effects from an external input, such as a video stream (desktop capture, video player, tv card), an audio stream (jack, alsa), or user input (lirc, http). Boblight uses a client/server model, where clients are responsible for translating an external input to light data, and boblightd is responsible for translating the light data into commands for external light controllers.”

The hardware to start with looks like this:

pre_requisites

I’ve fitted some heat-sinks to the Pi since the additional load of controlling 50 LEDs will add a little bit of additional CPU usage which is desperately needed when playing Full HD High-Bitrate content.

The puzzle pieces need to be put together as described by the very good AdaFruit diagram:

diagramAs you can see the Pi is powered directly through the GPIO pins. You’re not going to use the MicroUSB or the USB ports to power the Pi. It’s important that you keep the cables between the Pi and the LEDs as short as possible. When I added longer / unshielded cables everything went flickering. You do not want that – so short cables it is :-)

leds

When you look at aboves picture closely you will find a CO and DO on the PCB of the LED. on the other side of the PCB there’s a CI and DI. Guess what: That means Clock IN and Clock OUT and Data IN and Data OUT. Don’t be mistaken by the adapter cables the LED stripes comes with. My Output socket looked damn close to something I thought was an Input socket. If nothing seems to work on the first trials – you’re holding it wrong! Don’t let the adapters fitted by the manufacturer mislead you.

Depending on the manufacturer of your particular LED stripe there are layouts different from the above image possible. Since RaspBMC is bundled with Boblight already you want to use something that is compatible with Boblight. Something that allows Boblight to control each LED in color and brightness separately.

I opted for WS2801 equipped LEDs. This pretty much means that each LED sits on it’s own WS2801 chip and that chip takes commands for color and brightness. There are other options as well – I hear that LDP8806 chips also work with Boblight.

My power supply got a little big to beefy – 10 Amps is plenty. I originally planned to have 100 LEDs on that single TV. Each LED at full white brightness would consume 60mA  – which brings us to 6Amps for a 100 – add to that the 2 Amps for the PI and you’re at 8A. So 10A was the choice.

To connect to the Pi GPIO Pins I used simple jumper wires. After a little bit of boblightd compilation on a vanilla Raspbian SD card (how-to here). Please note that with current RaspBMC versions you do not need to compile Boblight yourself – I’ve just taken for debugging purposes as clean Raspbian Image and compiled it myself to do some boblight-constant tests. Boblight-constant is a tool that comes with Boblight which allows you to set all LEDs to one color.

If everything is right, it should look like this:

working_first_timeNow everything depends on how your LED stripes look like and how your TVs backside looks like. I wanted to fit my setup to a 42″ Samsung TV. This one already is fitted with a Ultra-Slim Wall mount which makes it pretty much sitting flat on the wall like a picture. I wanted the LEDs to sit right on the TVs back and I figured that cable channels when cut would do the job pretty nicely.

To get RaspBMC working with your setup the only things you need to do are:

  1. Enable Boblight support in the Applications / RaspBMC tool
  2. Login to your RaspBMC Pi through SSH with the user pi password raspberry and copy your boblight.conf file to /etc/boblight.conf.

The configuration file can be obtained from the various tutorials that deal with the boblight configuration. You can choose the hard way to create a configuration or a rather easy one by using the boblight configuration tool.

I’ve used the tool :-)

Boblight Config ToolNow if everything went right you don’t have flickering, the TV is on the wall and you can watch movies and what-not with beautiful light effects around your TV screen. If you need to test your set-up to tweak it a bit more, go with this or this.

result_1

Source 1: http://en.wikipedia.org/wiki/Ambilight
Source 2: http://www.raspberrypi.org/
Source 3: https://code.google.com/p/boblight/
Source 4: http://www.raspbmc.com/
Source 5: http://learn.adafruit.com/light-painting-with-raspberry-pi/hardware
Source 6: How-To-Compile-Boblight
Source 7: Boblight Config Generator
Source 8: Boblight Windows Config Creation Tool
Source 9: Test-Video 1
Source 10: Test-Video 2

when DVB-T is not interesting, use the hardware for fun and SDR!

SDR – or Software Defined Radio is relatively cheap and fun way to dive deeper into radio communication.

“Software-defined radio (SDR) is a radio communication system where components that have been typically implemented in hardware (e.g. mixers, filters, amplifiers, modulators/demodulators, detectors, etc.) are instead implemented by means of software on a personal computer or embedded system. While the concept of SDR is not new, the rapidly evolving capabilities of digital electronics render practical many processes which used to be only theoretically possible.” (Wikipedia)

So with cheap hardware it’s possible to receive radio transmissions on all sorts of frequencies and modulations. Since everything after the actual “receiving stuff”-phase happens in software the things you can do are sort of limitless.

Now what about the relatively cheap factor? – The hardware you’re going to need to start with this is a DVB-T USB stick widely available for about 25 Euro. The important feature you’re going to look for is that it comes with a Realtek RTL2832U chip.

“The RTL2832U is a high-performance DVB-T COFDM demodulator that supports a USB 2.0 interface. The RTL2832U complies with NorDig Unified 1.0.3, D-Book 5.0, and EN300 744 (ETSI Specification). It supports 2K or 8K mode with 6, 7, and 8MHz bandwidth. Modulation parameters, e.g., code rate, and guard interval, are automatically detected.

The RTL2832U supports tuners at IF (Intermediate Frequency, 36.125MHz), low-IF (4.57MHz), or Zero-IF output using a 28.8MHz crystal, and includes FM/DAB/DAB+ Radio Support. Embedded with an advanced ADC (Analog-to-Digital Converter), the RTL2832U features high stability in portable reception.” (RealTek)

You’ll find this chip in all sorts of cheap DVB-T USB sticks like this one:

3948543_b6f7670bc7To use the hardware directly you can use open source software which comes pre-packaged with several important/widely used demodulator moduls like AM/FM. Gqrx SDR is available for all sorts of operating systems and comes with a nice user interface to control your SDR hardware.

The neat idea about SDR is that you, depending on the capabilities of your SDR hardware, are not only tuned into one specific frequency but a whole spectrum several Mhz wide. With my device I get roughly a full 2 Mhz wide spectrum out of the device allowing me to see several FM stations on one spectrum diagram and tune into them individually using the demodulators:

Bildschirmfoto 2013-11-01 um 23.28.56The above screenshot shows the OS X version of Gqrx tuned into an FM station. You can clearly see the 3 stations that I can receive in that Mhz range. One very strong signal, one very weak and one sort of in the middle. By just clicking there the SDR tool decodes this portion of the data stream / spectrum and you can listen to a FM radio station.

Of course – since those DVB-T sticks come with a wide spectrum useable – mine comes with an Elonics E4000 tuner which allows me to receive – more or less useable – 53 Mhz to 2188 Mhz (with a gap from 1095 to 1248 Mhz).

Whatever your hardware can do can be tested by using the rtl_test tool:

root@berry:~# rtl_test -t
Found 1 device(s):
0:  Terratec T Stick PLUS

Using device 0: Terratec T Stick PLUS
Found Elonics E4000 tuner
Supported gain values (14): -1.0 1.5 4.0 6.5 9.0 11.5 14.0 16.5 19.0 21.5 24.0 29.0 34.0 42.0
Benchmarking E4000 PLL…
[E4K] PLL not locked for 52000000 Hz!
[E4K] PLL not locked for 2189000000 Hz!
[E4K] PLL not locked for 1095000000 Hz!
[E4K] PLL not locked for 1248000000 Hz!
E4K range: 53 to 2188 MHz
E4K L-band gap: 1095 to 1248 MHz

Interestingly when you plug the USB stick into an Raspberry Pi and you follow some instructions you can use the Raspberry Pi as an SDR server allowing you to place it on the attic while still sitting comfortably at your computer downstairs to have better reception.

If you want to upgrade your experience with more professional hardware – and in fact if you got a sender license – you can take a look at the HackRF project which currently is creating a highly sophisticated SDR hardware+software solution:

jawbreaker-fd0-145436

Source 1: http://www.realtek.com.tw/products/productsView.aspx?Langid=1&PFid=35&Level=4&Conn=3&ProdID=257
Source 2: http://gqrx.dk/
Source 3: www.hamradioscience.com/raspberry-pi-as-remote-server-for-rtl2832u-sdr/
Source 4: http://ossmann.blogspot.de/2012/06/introducing-hackrf.html
Source 5: https://github.com/mossmann/hackrf

putting h.a.c.s. (or other) sensory data into a motion based webcam image

I am using some Raspberry Pis to monitor the areas around the house. Mainly because it’s awesome to see how many animals are roaming around in your garden throughout the day. On the Pi I am using the current Debian image and motion to interface with an USB webcam.

Now I wanted to include sensory data into the webcam images – like the current temperature. The nice thing about h.a.c.s. is that it can deliver every sensors data in nice and easy to use JSON. The only challenge now is to get the number into motion.

First of all I need to get the URL together where I can access sensor data for the right sensor. In this case it’s the sensor called “Schuppen” – an outdoor sensor measuring the current temperature around the house.

Bildschirmfoto 2012-12-16 um 00.37.37

Now there is an easy way to ‘feed’ data into a running motion instance. Motion offers a control port and allows to set the text_left and text_right properties. Doing a simple GET request there allows us to set the text to – in this example – “remote-controlled-text”:

Bildschirmfoto 2012-12-16 um 00.52.56

So – that’s how the text is set – now how to get the temperature value, and just that, out of the JSON response of h.a.c.s.? Easy – use jsawk!

Bildschirmfoto 2012-12-16 um 01.02.07

With all that a very small shell script is quickly hacked:

Bildschirmfoto 2012-12-16 um 01.05.38

If you want to copy that into your editor, here’s the code:

#!/bin/bash
TEMPERATURE=`curl -s 'http://hacs/data/sensor?name=Schuppen&type=temperature&lastentry=true' | jsawk 'return this.data[0][1]'`
curl -s 'http://localhost:8080/0/config/set?text_left='$TEMPERATURE

Localhost port 8080 is the port and adress of the motion control server .

To have the webcam updated regularly, I added it to crontab and from now on the current temperature is in every webcam image – hurray!

Source 1: motion
Source 2: jsawk

Blogroll: Nerdcore NC-Sources OPML

A couple of days ago the well known and much read Nerdcore weblog author created a page he calls NC-Sources which lists all the sources he has in his RSS reader to get new information from. As you can imagine, this is pure gold for those who want to get interesting links to all-nerd pages.

Unfortunately NC-Sources is just available as a web-page which lists the name and the RSS feed URL. You cannot import that into your RSS Reader to use it for your own informational needs.

Here I am to the rescue. I’ve taken all the URLs from that NC Source page. That resulted in a file that lists the page url and the rss-feed url in alternating lines. A short trip to the command line and the use of awk helped to filter just the rss-feed urls to a new file and that was filled into an opml generator.

So now you can download the OPML file to import it into your own RSS reader. Get it here.

Source 1: NC-Sources
Source 2: NC-Sources OPML File
Source 3: OPMLBuilder

Raspberry Pi gets a camera

The first signs of the upcoming camera board for the raspberry pi are showing. During the Electronica 2012 fair RS showed the board to the public for the first time.

Since it’s going to be a 25 Euro add-on for the Pi the specification is quite impressive. The OmniVision OV5647 is used as the Image Sensor – it’s bigger brother is used in iPhone 4. OmniVision says:

“The OV5647 is OmniVision’s first 5-megapixel CMOS image sensor built on proprietary 1.4-micron OmniBSI™ backside illumination pixel architecture. OmniBSI enables the OV5647 to deliver 5-megapixel photography and high frame rate 720p/60 high-definition (HD) video capture in an industry standard camera module size of 8.5 x 8.5 x ≤5 mm, making it an ideal solution for the main stream mobile phone market.

The superior pixel performance of the OV5647 enables 720p and 1080p HD video at 30 fps with complete user control over formatting and output data transfer. Additionally, the 720p/60 HD video is captured in full field of view (FOV) with 2 x 2 binning to double the sensitivity and improve SNR. The post binning re-sampling filter helps minimize spatial and aliasing artifacts to provide superior image quality.

OmniBSI technology offers significant performance benefits over front-side illumination technology, such as increased sensitivity per unit area, improved quantum efficiency, reduced crosstalk and photo response non-uniformity, which all contribute to significant improvements in image quality and color reproduction. Additionally, OmniVision CMOS image sensors use proprietary sensor technology to improve image quality by reducing or eliminating common lighting/electrical sources of image contamination, such as fixed pattern noise and smearing to produce a clean, fully stable color image.

The low power OV5647 supports a digital video parallel port or high-speed two-lane MIPI interface, and provides full frame, windowed or binned 10-bit images in RAW RGB format. It offers all required automatic image control functions, including automatic exposure control, automatic white balance, automatic band filter, automatic 50/60 Hz luminance detection, and automatic black level calibration.”

That sensor delivers RAW RGB Imagery to the RaspberryPi through the onboard camera connector interface:

this actually is a 14 MPixel test-board and not the final 5 MPixel one…

And the part that impressed me the most is that that 5 Megapixel sensor delivers it’s raw data stream and it gets h264 compressed directly within the GPU of the Raspberry Pi. 30 frames per second 1080p without noticeable CPU load – how does that sound? – Not bad for a 50 Euro setup!

Source 1: First Demo
Source 2: OmniVision OV5647 Color CMOS QSXGA Image Sensor

a delicious raspberry pi

Just a couple of days ago – after a waiting time of more than half a year – my personal raspberry pi board arrived. Fantastic!

It’s small. Oh yes, it’s very very small.

What is the Raspberry Pi you may ask:

“The Raspberry Pi is a credit-card sized computer that plugs into your TV and a keyboard. It’s a capable little PC which can be used for many of the things that your desktop PC does, like spreadsheets, word-processing and games. It also plays high-definition video. We want to see it being used by kids all over the world to learn programming.”

For under 40 Euro you get a huge choice of I/O interfaces like USB, Ethernet, HDMI, Audio and Multi Purpose IO pins you can play with if you’re into hardware hacking. This small card is running a fully blown linux and because it has a dedicated graphics core which can hardware decode and encode 1080p h264 it’s definitely a good choice for a home mediacenter (yes, XBMC runs on it.)

It draws so little power that you could use solar panels to power it. It’s all open and sourced and I will use it for a couple of things in the household. Like a cheap Airplay node. Or a more intelligent sensor node for home automation. This thing seriously rocks – finally a device to play with – with reasonable horse-power.

Source 1: http://www.raspberrypi.org
Source 2: http://www.raspbmc.com

configuring the nano editor to my needs…

Configuring your favourite Editor on OSX (or Linux, or anywhere else) is important – since nano is my editor of choice I wanted to use it’s syntax highlighting capabilities. Easy as pie as it turned out:

I started with a .nanorc file from this guy and modified it to recognize some of my frequent file-types (like .cs files).

You can download my nanorc.tar – just extract it and put it into your user home directory.

Source 1: http://talk.maemo.org/showthread.php?t=68421
Source 2: http://www.nano-editor.org/dist/v2.2/nano.html#Nanorc-Files
Source 3: nanorc.tar

das außer-Haus Backup

Irgendwie werden es auch privat immer immer mehr Daten – mit immer zunehmender Geschwindigkeit… Alle paar Jahre tausche ich bei uns im Haushalt die Festplatten/Speicherlösung komplett aus – was zwar immer wieder mal eine Investitions bedeutet, gleichzeitig aber auch dafür sorgt dass Daten nicht irgendwelchen ungünstigen mechanischen, chemischen oder magnetischen Effekten zum Opfer fallen… Ja so etwa alle zwei Jahre wird alles einmal umkopiert… Das dauerte beim letzten Mal zwar gut eine Woche, aber naja so ist das eben…

Aus vielerlei Grund haben wir auch für einen Haushalt recht viel Bedarf an Speicherplatz – teilweise wohl auch weil meine Frau Photographin ist – aber ich als “werf-nix-weg”-Typ werd da auch einen guten Anteil dran haben…

Herr über alle unsere Festplatten (kein Witz, die Rechner bei uns haben ihre Festplatten eigentlich nur um booten zu können) ist seit jeher ein einzelner Rechner welcher ebenso alle paar Jahre komplett ausgetauscht wird. Dieser Rechner verwaltet im Moment zwischen 12-15 Festplatten verschiedener Größe – Hauptarbeit wird zur Zeit durch drei separate (gewachsene) RAID-5 Volumes erledigt…

Nebenbei: Nein ich kann/will da kein RAID-6 fahren ohne entweder Linux zu verwenden (was aus verschiedenen Gründen nicht geht) oder einen Hardware-Controller zu verwenden, was nach einschlägigen Erfahrungen querbeet durch alle möglichen Hardware RAID Controller ausfällt.

Dem ganzen Festplattenstapel liegt dann ein Standard-PC mit Windows Server 2008 zugrunde – zum einen weil ich so eine Lizenz noch herumliegen hatte und zum anderen weil ich in über 10 Jahren File-Server Erfahrungen sammeln noch nie auch nur ein Byte unter Windows verloren habe. Zusätzlich habe ich einen riesigen Haufen Software welche Windows-only ist ud sozusagen ständig laufen muss um Sinn zu machen (Mail-Server Puffer, Newsserver Mirror, Musik und Video Streaming Server, Medienbibliothek, Videorekorder,…

Diese drei großen RAID Volumes schnappt sich dann Truecrypt und ver- und entschlüsselt zuverlässig vor sich hin – im Endeffekt gibt es kein Byte Daten im Haushalt welches nicht verschlüsselt wäre. Gut für uns.

So ein RAID verhindert nun ja aber nicht dass dennoch oben genannte ungünstige Effekte eintreten und man mal eine oder mehrere Defekte zu beklagen hat. Im Normalfall tauscht man die defekte Festplatte, resynct das RAID und alles funktioniert weiter ohne dass man Daten verloren hätte. Allerdings ist das ja kein Backup. Das ist nur eine erste Absicherung gegen mögliche Defekte.

Getreu folgendem kurzen Musikstück:

RAID ist kein Backup

… ist ein RAID eben kein Backup. Backups erledigt bei mir eine Sammlung von Scripten welche jeweils in festen Abständen Vollbackups und Differenz-Backups erstellt. Da kommt dann ein Haufen 1 Gbyte großer Dateien raus welche dann anschliessend per RSync in mühevoller (und dank funktionierendem QoS unbemerkt) Arbeit außer Haus geschafft werden. Die Komplett-Backups dauern aufgrund der großen Menge einfach ewig lang und lassen sich recht einfach dadurch beschleunigen dass man sozusagen das Backup physisch auf einer externen Festplatte zum Server trägt…die Differenz-Backups sind dann meist immer recht flott durchgelaufen. Speicherplatz im Internet wird ja auch immer billiger und so haben wir auch immer ein gutes Off-Site Backup unserer Daten…

Für Windows gibt es neben den üblichen Cygwin Ports von rsync auch eine gute GUI Version namens DeltaCopy. Das Ding kopiert zuverlässig und auch wenn mal der DSL Router rebootet oder hängt nimmt er selbständig die Kopierarbeit wieder auf sobald Netz wieder verfügbar ist.

Damit DeltaCopy seine Daten irgendwo abladen kann wird auf der Gegenstelle natürlich ein rsync Server vorrausgesetzt. Die Konfiguration eines solchen ist nicht sonderlich kompliziert – im Grunde muss man nur rsync installieren und die rsyncd.conf Datei anpassen. Zusätzlich dazu muss man eine Konfigurationsdatei anlegen in welchem nach dem Schema “Benutzername:Passwort” entsprechend die Nutzeraccounts angegeben werden – das wars eigentlich schon. Rsync ist sehr robust und vor allem auch gut für geringere Bandbreiten geeignet. Wenn sich an einer Datei nur wenige Bytes geändert haben müssen auch nur die geänderten Bytes übertragen werden.

Source 1: http://www.speichergurke.de
Source 2: http://www.aboutmyip.com/AboutMyXApp/DeltaCopy.jsp
Source 3: http://de.wikipedia.org/wiki/Rsync

Shairport – someone reversed an AirPort Express

Low Latency Network Audio was a dream for the past years (see an article of 2005 and 2008) and with AirPlay it’s finally there.

I am using the Apple AirPlay technology for several years now… after it got implemented into iOS it’s just fantastic to have the option to have whatever sound source I want to playing loud and clear in any room I want to…

Okay it’s not quite as sophisticated as the sonos solution regarding the control of multiple music sources in multiple rooms but it get’s the job done in an apartment.

So back to the topic: Apple integrated the AirPlay technology into their wireless base station “AirPort Express”. Basically AirPlay is a piece of software which receives an encrypted audio stream over the network and outputs the stream to the SPDIF or audio jack.

Back in 2005 there already was an emulator of this protocol called “Fairport” but Apple decided to encrypt the AirPlay traffic. This led to the problem that the encryption key was unkown because it’s baked into the AirPort Express firmware. And this is where the good news start:

“My girlfriend moved house, and her Airport Express no longer made it with her wireless access point. I figured it’d be easy to find an ApEx emulator – there are several open source apps out there to play to them. However, I was disappointed to find that Apple used a public-key crypto scheme, and there’s a private key hiding inside the ApEx. So I took it apart (I still have scars from opening the glued case!), dumped the ROM, and reverse engineered the keys out of it.”

So to keep things short: Someone got an AirPort Express, dumped the firmware, extracted the AirPlay encryption keys and wrote an emulator of the AirPlay protocol which uses the key. Voilá!

ShairPort is available in source code on the site of the guy and obviously it’s unsure if Apple will react by changing the encryption key in the future. But for the time being it works as advertised:

I took one of my computers and followed the instructions to update perl, install Macports and then run ShairPort. So when ShairPort is run it looks not as appealing as expected:

Notably  it uses IPv6 to communicate between iTunes and ShairPort… Oh I almost forgot to show how it looks in iTunes:

On another side note: It works on Linux, Windows and Mac OS X :-)

Source 1: Apple AirPlay
Source 2: Sonos
Source 3: Apple AirPort Express
Source 4: ShairPort

modifying OS X terminal to make it more useable…

Using OS X for the daily work is getting easier every day. And most of the time I am doing work using the Terminal.app.

So there are some configuration changes necessary to make it even more useable…

  1. Edit /etc/bashrc and add some alias and color definitions
    1. alias ll=”ls -hfG”
    2. alias la=”ls -ahfG”
    3. export LSCOLORS=fxfxcxdxbxegedabagacad
  2. custom color schemes can be defined using the lscolors tool
  3. install screen (using MacPorts for example) and setup a ~/.screenrc
    1. Download a sample .screenrc

Source 1: http://geoff.greer.fm/lscolors/
Source 2: http://www.macports.org/
Source 3: ScreenRC.tar

great SIP Softphone for Linux and Windows

Thank goodness I can uninstall X-Lite! At sones we are using a SIP based telephony solution. And therefore some times a SIP softphone application is needed along with the obligatory hardware SIP telephones. Till today the only half-working software I knew for that task was X-Lite. But a colleague told me today that there is a better software which not even looks better but also works better than X-Lite.

It’s called “Ekiga” and it’s a GTK based open source application which can run on Windows and Linux. It looks clean and therefore nice and works great.

A special tip from me: Abort the Welcome Wizard because the only thing it does is registering you with ekigas’ own services.

Capture

Source: http://ekiga.org/

Mono 2.8 released!

Hurray! Finally the 2.8 version of Mono – the platform independent open source .NET framework is available as of today. I finally don’t have to recompile the trunk every now and then to get my bits running Smiley

The Major Highlights according to the release notes are:

  • C# 4.0
  • Defaults to the 4.0 profile.
  • New Garbage Collection engine
  • New Frameworks:
    • Parallel Framework
    • System.XAML
  • Threadpool exception behavior has changed to match .NET 2.0
    • potentially a breaking change for a lot of Mono-only software
    • See information below in the "Runtime" section.
  • New Microsoft open sourced frameworks bundled:
    • System.Dynamic
    • Managed Extensibility Framework
    • ASP.NET MVC 2
    • System.Data.Services.Client (OData client framework)
  • Performance
    • Large performance improvements
    • LLVM support has graduated to stable
      • Use mono-llvm command to run your server loads with the LLVM backend
  • Preview of the Generational Garbage Collector
  • Version 2.0 of the embedding API
  • WCF Routing
  • .NET 4.0’s CodeContracts
  • Removed the 1.1 profile and various deprecated libraries.
  • OpenBSD support integrated
  • ASP.NET 4.0
  • Mono no longer depends on GLIB

Oh – they even linked my benchmark article.

Source: http://www.mono-project.com/Release_Notes_Mono_2.8

How To strip those TFS Source Control references from Visual Studio Solutions

Every once in a while you download some code and fire up your Visual Studio and find out that this particular solution was once associated to a team foundation server you don’t know or have a login to. Like when you download source code from CodePlex and you get this “Please type in your username+password for this CodePlex Team Foundation Server”.

Or maybe you’re working on your companies team foundation server and you want to put some code out in the public. You surely want to get rid of these Team Foundation Server bindings.

There’s a fairly complicated way in Visual Studio to do this but since I was able to produce unforseen side effects I do not recommend it.

So what I did was looking into those files a Visual Studio Solution and Project consists of. And I found that there are really just a few files that hold those association information. As you can see in the picture below there are several files side by side to the .sln and .csproj files – like that .vssscc and .vspscc file. Even inside the .csproj and .sln file there are hints that lead to the team foundation server – so obviously besides removing some files a tool would have to edit some files to remove the tfs association.

strip-files

So I wrote such a tool and I am going release it’s source code just beneath this article. Have fun with it. It compiles with Visual Studio and even Mono Xbuild – actually I wrote it with Monodevelop on Linux ;) Multi-platform galore! Who would have thought of that in the founding days of the .NET platform?

Bildschirmfoto-StripTeamFoundationServerInformation - Main.cs - MonoDevelop

So this is easy – this small tool runs on command line and takes one parameter. This parameter is the path to a folder you want to traverse and remove all team foundation server associations in. So normally I take a check-out folder and run the tool on that folder and all its subfolders to remove all associations.

So if you want to have this cool tool you just have to click here: Sourcecode Download

Using Windows Deployment Services (WDS) to install Linux over Network (PXE)

Developing software is hard work – especially when you target several operating systems. One task that you have to perform quite often would be to deploy a new installation of an operating system as fast as possible on a test machine.

Doing this with Windows is easy – you can use the Windows Deployment Services to bootstrap Windows onto almost every machine which can boot over ethernet using PXE. Everything needed to make WDS work on a Windows Boot-Image is located on that image. Since it’s that easy I won’t dive into more detail here.

What I want to show in greater detail is how you can use WDS to deploy even Linux over your network.

Step 1: Get PXELINUX

What’s needed to boot Linux over a network is a dedicated PXE Boot Loader. This one is called PXELINUX and can be downloaded here.

“PXELINUX is a SYSLINUX derivative, for booting Linux off a network server, using a network ROM conforming to the Intel PXE (Pre-Execution Environment) specification.”

On the homepage of PXELINUX is also a short tutorial which files you need and where to copy them.

Step 2: Setup WDS with PXELINUX

I suppose you got your WDS Installation up and running and you are able to deploy Windows. If that’s the case you can go to your WDS Server Management Tool and right-click on the server name – in my case “fileserver.sones”. If you select “Properties” in the context menu you would see the properties windows like in the screenshot below:

wds_pxelinux

You have to change the Boot-Loader from the standard Windows BootMgr to the newly downloaded PXELINUX bootloader. Since this bootloader comes with it’s own set of config files you can edit this config file to allow booting into Windows.

Step 3: Edit PXELINUX configuration filewds-pxelinux-2 

The first entry I made into the boot menu of the PXELINUX boot loader is the “Install Windows…” entry. Since the first thing the users will see after booting is the PXELINUX loader menu they need to be able to continue to their Windows Installation. Since this Windows Installation cannot be handled by the PXELINUX loader you have to define a boot menu entry which looks a lot like this:

LABEL wds
MENU LABEL Install Windows…
KERNEL pxeboot.0

To add OpenSuSE to the menu you would add an entry looking like this:

LABEL opensuse
MENU LABEL Install OpenSuSE 11.x
kernel /Linux/opensuse/linux
append initrd=/Linux/opensuse/initrd splash=silent showopts

The paths given in the above entry should be altered according to the paths you’re using in your installation. I took the /Linux/opensuse/ files from the network install dvd images of OpenSuSE.

wds-pxelinux-3

That’s basically everything there is about the installation of Linux (Debian works accordingly) over PXE and WDS.

And finally this is what it should look like if everything worked great:

 

Source 1: http://en.wikipedia.org/wiki/Preboot_Execution_Environment
Source 2: http://syslinux.zytor.com/wiki/index.php/PXELINUX

Turning Linux ISO Images into bootable USB sticks

Today was Linux-Distribution-ISO-Install-Day. And it turned out that the only existing external DVD drive was fubar.

So what to do? We had a spare USB stick and it turns out that you can quite easily convert that USB stick into a bootable Linux-Distribution-Install-USB-Stick. Awesome!

Just download the tool called “UNetbootin”, start it and you can turn virtually any ISO Distribution Image into an USB Stick that boots and installs that ISO:

 screenshot

Source: http://unetbootin.sourceforge.net/

Welcome to the world of tomorrow!

So here we are on a new blog engine. It took me the better part of two days to do the Migration of 2,869 posts and 2,732 comments, a lot of pictures and movie files.

I will write an article on this but for now only two captures images from the migration:

php-xpath
yeah PHP rocks!

regex-magic 
had to do some regex action to do the url rewrites

sones portiert sein Speichersystem auf das Speichermedium der Zukunft!

Aufgrund neuester Entwicklungen im Speichermedien-Segment wird ab dem nächsten Release des sones Speichersystems auch das angesagteste Speichermedium der Stunde unterstützt: die Speichergurke.

Durch die sensationelle Speicherdichte und unerreichte Zuverlässigkeit ist die Speichergurke das perfekte Speichermedium für den Datenhunger von gestern, heute und morgen.

Source 1: http://www.sones.de
Source 2: http://www.speichergurke.de

Mono 2.0 released!!

“Mono 2.0 is a portable and open source implementation of the .NET framework for Unix, Windows, MacOS and other operating systems.”

  • Compiler
    • C# 3.0 compiler implementation, with full support for LINQ.
    • Visual Basic 8 compiler.
    • IL assembler and disassembler and the development toolchain required to create libraries and applications.
  • API
    • ADO.NET 2.0 API for accessing databases.
    • ASP.NET 2.0 API for developing Web-based applications.
    • Windows.Forms 2.0 API to create desktop applications.
    • System.XML 2.0: An API to manipulate XML documents.
    • System.Core: Provides support for the Language Integrated Query (LINQ).
    • System.Xml.Linq: Provides a LINQ provider for XML.
    • System.Drawing 2.0 API: A portable graphics rendering API.

mono2

Source: http://www.mono-project.com/Main_Page