Streamsheets

Streamsheets is, similar to NodeRed, a tool to step in between MQTT data coming in and something being done with it. Just other than NodeRed it is not based on flows but on a spreadsheet that executes in it’s entirety everytime a step is made.

Streamsheets are a new spreadsheet technology specifically designed for real-time data stream processing and the opportunities of digitization and the Industrial IoT.

Streamsheets

SwiftUI on the Web

SwiftUI is the new cool kid on the block when it comes to iOS/iPadOS/macOS application development.

As Apple announced SwiftUI early 2019 it’s naturally only focussing on making all the declarative UI goodness available for the Apple operating systems. No non-apple platforms in focus. Naturally.

But there are ways. With the declarative way of creating user interfaces one apparently can simply start to re-implement the UI controls and have them render as HTML / Javascript…

The SwiftWebUI project is aiming to do so:

Unlike some other efforts this doesn’t just render SwiftUI Views as HTML. It also sets up a connection between the browser and the code hosted in the Swift server, allowing for interaction – buttons, pickers, steppers, lists, navigation, you get it all!

In other words: SwiftWebUI is an implementation of (many but not all parts of) the SwiftUI API for the browser.

To repeat the Disclaimer: This is a toy project! Do not use for production. Use it to learn more about SwiftUI and its inner workings.

SwiftWebUI

Making a RISC-V operating system using Rust

As RISC-V progressively challenges the existing ARM processor ecosystem it’s interesting to see more and more software projects popping up that aim that RISC-V architecture.

Here’s one project that aims to develop (and explain along the way) how to create an operating system from scratch. On top of the RISC-V specifics this tutorial also aims to teach how this all can be done in a programming language called Rust.

Keep in mind that all of this is done on a baremetal system. No other software is running.

RISC-V (“risk five”) and the Rust programming language both start with an R, so naturally they fit together. In this blog, we will write an operating system targeting the RISC-V architecture in Rust (mostly). If you have a sane development environment for RISC-V, you can skip the setup parts right to bootloading. Otherwise, it’ll be fairly difficult to get started.

This tutorial will progressively build an operating system from start to something that you can show your friends or parents — if they’re significantly young enough. Since I’m rather new at this I decided to make it a “feature” that each blog post will mature as time goes on. More details will be added and some will be clarified. I look forward to hearing from you!

The Adventures of OS

a 1980s style computer built today for fun

Can you display VGA and play audio on a Cortex-M4 in pure Rust? The short answer is yes, yes you can! Minus the hand-unrolled assembler loop for fixing the phase error in the RGB output. But we don’t talk about that in polite company.

Monotron project page

What currently is in place:

  • The Atari Joystick interface works, but two Joysticks would be more fun
  • The PS/2 Keyboard via the Atmega works, but the pinout was mirrored so you have to put the connector under the PCB :/
  • The RTC works
  • VGA Output works
  • The MIDI Out seems to work when looped to MIDI In, as does the MIDI Though.
  • The MIDI In seems to receive data when connected to my electronic drum kit
  • The Audio output seems to work quite nicely
  • The SD card works, but the power supply can’t handle hot-insertion of the SD card and it makes the TM4C reboot. More capacitors / some current limiting probably required.

I can load games and programs from the SD card into the 24 KiB of free Application RAM. You can interact with these games via the PS/2 Keyboard and Joystick. I can play simple games (like Snake) and play three channels of 8-bit wavetable audio simultaneously. I’ve even got a 6502 Emulator running a copy of 6502 Enhanced BASIC, if you want to go old school!

Localino – Indoor Location

As you might know I am regularly looking into indoor-location systems and opportunities to optimize my own system (based on Bluetooth…)

Now I cam across a concept by a german company called Localino. They’ve built their own hard- and software.

Localino has its own “satellites”, also called “anchors”. The mobile receivers are called “tags” and can locate their position based on the available anchors inside a building. Anchors and tags precisely measure signal propagation delays in the order of sub-nanoseconds, resulting in centimeter-accurate location. Any person or object wearing a tag can be located.

Localino website

There’s also a hack-a-day article on the system which states that all hard- and software would be open source. So far I did not find any source code though…

As far as I could dig into this so far it’s based upon decawave DW1000 hardware and an older base-library of this is available as source code here.

There are some other mentions which are back from 2017 when there seemingly was a big open source portion. Some python code is mentioned but nothing available right away today sadly.

REST-API testing: Reqres

I am back again and developing some smaller APIs for my own use.

As I am learning a new programming language and framework (SwiftUI) and for my little learning project I need to also implement a server backend. Implementing a RESTful service is quite straight-forward but for testing and UI prototyping I actually want to do some testing before really setting up the server side.

To easily test RESTful calls without actually implementing anything I found that Reqres is a quite useful tool to have in the toolbelt:

Apart from some pre-set-up API endpoints with dummy data (like users, …) it also features a request mirror service.

With that you can simply throw a JSON document into the general direction of Reqres and it will put a timestamp on it and return it right away.

Like so:

Writing Network Drivers in C#

Somebody had to do it. Maximilian Stadlmeier did:

User space network drivers on Linux are often used in production environments to improve the performance of network-heavy applications. However, their inner workings are not clear to most
programmers who use them. ixy aims to change this by providing a small educational user space network driver, which is gives a good overview of how these drivers work, using only 1000 lines of C code.
While the language C is a good common denominator, which many developers are familiar with, its syntax is often much more dicult to read than that of more modern languages and makes the driver seem more complex than it actually is.

For this thesis I created a C# version of ixy, named ixy.cs, which utilizes the more modern syntax and additional safety of the C# programming language in order to make user space network driver development even more accessible. The viability of C# for driver programming will be analyzed and its advantages and disadvantages will be discussed.

The actual implementation (with other programming languages as well) can be found here.

Apparently it’s not as slow as you might think:

Bulletin Board Systems in the wild

While recording a podcast episode we briefly touched on the topic of bulletin board systems and how we both had operated our own FidoNet BBS in the 90s.

To create a bigger reflux of thoughts:

Synchronet Bulletin Board System Software is a free software package that can turn your personal computer into your own custom online service supporting multiple simultaneous users with hierarchical message and file areas, multi-user chat, and the ever-popular BBS door games.

Everything there to set-up a BBS. Maybe I really need to get out a backup of my old BBS and bring it back online?!

One Soundcard to rule them all

The first sound card I got as an upgrade to a PC without sound back in 90s was the glorious Sound Blaster 16:

There were several different sound card options back in the days and all sounded a bit different.

sound card (also known as an audio card) is an internal expansion card that provides input and output of audio signals to and from a computer under control of computer programs. The term sound card is also applied to external audio interfaces used for professional audio applications.

Wikipedia

With the synthesizers and audio processing each series and make produced a distinctive sound. Some of us want to bring these sounds back. But keeping the (old) hardware running is an increasingly difficult task.

For example: The interface used by the above mentioned Sound Blaster 16 card is the ISA bus interface. This interface was introduced in 1981 and replaced in 1993. If you want to hear how such a sound card sounds today you would have to run hardware from this time period.

But some people are working towards getting at least some authentic sound back.

In this talk, Alan Hightower takes a look at the complexities, challenges, and even current progress at integrating all of the above cores into one FPGA based ISA sound card.

This is what the concept would bring if done:

Oh that would be soooooo nice to have all these vintage sound interfaces available and to be able to actually use them for audio output.

using AI to generate human faces from emojis and thumbnails

Back in March 2019 we’d already seen artificial people. Yawn.

Back then a Generative adversarial network (GAN) was used to produce random human faces from scratch. It synthesized human faces out of randomness.

Now take it a step further and input actual small images. Like thumbnails or emojis or else.

And what do you get?

Quite impressive, eh? There’s more after the jump.

Oh and they wrote a paper about it: Progressive Face Super-Resolution via Attention to Facial Landmark

Magnificent app which corrects your previous console command

We all know this. You typed a loooong line of commands in your shell and you made one typo.

That’s the worst.

Now. There’s a command that aims to help:

It is rather simple. But extremely effective.

The Fuck attempts to match the previous command with a rule. If a match is found, a new command is created using the matched rule and executed.

Grab it on github. Install it right away. It went into my toolbelt in an instant.

C# PlayStation emulation

After looking into the NES emulation written entirely in C# I came across a similar approach using C# to emulate a full and much more complex PlayStation 1.

Scott Hanselman wrote:

I then stumbled on this very early version of a PSX Emulator in C#.

Now, if you were to theoretically have a Playtation SCPH1001.BIN BIOS and then physically owned a Playstation (as I do) and then created a BIN file from your physical copy of Crash Bandicoot, you could happily run it as you can see in the screenshot below.

Experimental Audio Tool: SuperCollider

SuperCollider is a platform for audio synthesis and algorithmic composition, used by musicians, artists, and researchers working with sound. It is free and open source software available for Windows, macOS, and Linux.

SuperCollider features three major components:

scsynth, a real-time audio server, forms the core of the platform. It features 400+ unit generators (“UGens”) for analysis, synthesis, and processing.

sclang, an interpreted programming language. It is focused on sound, but not limited to any specific domain. sclang controls scsynth via Open Sound Control.

scide is an editor for sclang with an integrated help system.

Fonts for Coders: Cascadia

Microsoft recently is releasing a lot of tools and assets for developers and terminal monkeys.

This is good. Very nice of them.

The recent release of a font specifically for terminal and code editing use seems worth a mention here:

Cascadia Code was announced this past May at Microsoft’s Build event. It is the latest monospaced font shipped from Microsoft and provides a fresh experience for command line experiences and code editors. Cascadia Code was developed hand-in-hand with the new Windows Terminal application. This font is most recommended to be used with terminal applications and text editors such as Visual Studio and Visual Studio Code.

Cascadia Code announcement

What’s most interesting about this: It’s got code ligatures. Just recently a lot of development focussed fonts showed up and they started to incorporate special characters for development specific character combinations:

Cascadia Code supports programming ligatures! Programming ligatures are most useful when writing code, as they create new glyphs by combining characters. This helps make code more readable and user-friendly for some people.

Cascadia

good wireguard tutorial

If you, like me, are looking into new emerging tools and technologies you might also look at Wireguard.

WireGuard® is an extremely simple yet fast and modern VPN that utilizes state-of-the-art cryptography. It aims to be faster, simpler, leaner, and more useful than IPsec, while avoiding the massive headache. It intends to be considerably more performant than OpenVPN. WireGuard is designed as a general purpose VPN for running on embedded interfaces and super computers alike, fit for many different circumstances. Initially released for the Linux kernel, it is now cross-platform (Windows, macOS, BSD, iOS, Android) and widely deployable. It is currently under heavy development, but already it might be regarded as the most secure, easiest to use, and simplest VPN solution in the industry.

bold wireguard website statement

To apply and get started with WireGuard on Linux and iOS I’ve used the very nice tutorial of Graham Stevens: WireGuard Setup Guide for iOS.

This guide will walk you through how to setup WireGuard in a way that all your client outgoing traffic will be routed via another machine (server). This is ideal for situations where you don’t trust the local network (public or coffee shop wifi) and wish to encrypt all your traffic to a server you trust, before routing it to the Internet.

WireGuard Setup Guide for iOS.

Wave Function Collapse

I’ve written on this topic before here. And as developers venture more into these generative algorithms it’s all that more fun to see even the intermediate results.

Oskar Stålberg writes about his little experiments and bigger libraries on Twitter. The above short demonstration was created by him.

Especially worth a look is the library he made available on GitHub: mxgmn/WaveFunctionCollapse.

Some more context, of questionable helpfulness:

In quantum mechanicswave function collapse occurs when a wave function—initially in a superposition of several eigenstates—reduces to a single eigenstate due to interaction with the external world. This interaction is called an “observation”. It is the essence of a measurement in quantum mechanics which connects the wave function with classical observables like position and momentum. Collapse is one of two processes by which quantum systems evolve in time; the other is the continuous evolution via the Schrödinger equation. Collapse is a black box for a thermodynamically irreversible interaction with a classical environment. Calculations of quantum decoherence predict apparent wave function collapse when a superposition forms between the quantum system’s states and the environment’s states. Significantly, the combined wave function of the system and environment continue to obey the Schrödinger equation.

Wikipedia: WFC

Right. Well. Told you. Here are some nice graphics of this applied to calm you:

Multi-Sensor board progress

Still working on these

Still lots of errors and challenges to positioning and casing. It works electrically and in software. Does not yet fit into a case.

It’s supposed to get you these sensors accomodated:

  • barometric pressure
  • temperature
  • humidity
  • PIR motion
  • light intensity
  • bluetooth scan/BLE connectivity
  • Wifi scan / Wifi connectivity

And a RGB LED as output. All powered by USB and an ESP32.

Booting Faster (with Linux).

Booting a computer does not happen extremely often in most use-cases, yet it’s a field that has not seen as much optimization and development as others had.

Find a very interesting presentation on the topic: How to make Linux boot faster here. The presentation was held at the Linux Plumbers Conference 2019.

Convert HEIC to JPEG or PNG

If you own a modern age phone it’s very likely that it will store the photos you take in a wonderful format called HEIC – or “High Efficiency Image File Format (HEIF)”.

Now the issue with this format is that your average toolchain is based upon things like Portable Network Graphics (PNG), JPEG and maybe GIF or Scalable Vevtor Graphics (SVG).

So HEIC does not quite fit yet. But you can make it fit with this on Linux.

Imagemagick and current GIMP installations apparently still don’t come pre-compiled with HEIF support. But you can install a tool to easily convert an HEIC image into a JPG file on the command line.

apt install libheif-examples

and then the tool heif-convert is your friend.

QuickCharge 3 (QC3) enable your Arduino project

You might have asked yourself how it is that some phones charge up faster than others. Maybe the same phone charges at different speed when you’re using a different cable or power supply. It even might not charge at all.

There is some very complicated trickery in place to make those cables and power supplies do things in combination with the active devices like phones. Many of this is implemented by standards like “Quick Charge”:

Quick Charge is a technology found in QualcommSoCs, used in devices such as mobile phones, for managing power delivered over USB. It offers more power and thus charges batteries in devices faster than standard USB rates allow. Quick Charge 2 onwards technology is primarily used for wall adaptors, but it is also implemented in car chargers and powerbanks (For both input and output power delivery).

Wikipedia: Quick Charge

So in a nutshell: If you are able to speak the quick charge protocol, and with the right cable and power supply, you are able to get anything between 3.6 and 20V out of such a combination by just telling the power supply to do so.

This is great for maker projects in need of more power. There’s lots of things to consider and be cautious about.

“Speaking” the protocol just got easier though. You can take this open source library and “power up your project”:

The above mentioned usage-code will give you 12V output from the power supply. Of course you can also do…:

Be aware that your project needs to be aware of the (higher) voltage. It’s really not something you should just try. But you knew that.

More on Quick Charge also here.

smart arduino fish pond feeder: TurtleFeeder

We’ve got several quite big fish tanks in our house. Mainly used by freshwater turtles.

say Hi! to Wilma.

These turtles need to be fed every once in a while. And while this is not an issue normally it’s an issue if you leave the house for travel for an extended period of time.

Of course there are humans checking on everything in the house regularly but as much as can be automated should and will be automated in our household. So the requirement wa to have the turtle feeding automated.

To achieve this is would be necessary to have a fixed amount of turtle food be dispensed into the tanks on a plan and with some checks in the background (like water quality and such).

It’s been quite a hassle to come up with a plan how the hardware should look like and work. And ultimately i’ve settled on retrofitting an off-the-shelf fish pond feeder to become controllable through MQTT.

The pond feeder I’ve found and used is this one:

It’s not really worth linking to a specific product detail page as this sort of feeder is available under hundreds of different names. It always looks the same and is priced right around the same.

If you want to build this yourself, you want one that looks like the above. I’ve bought 3 of them and they all seem to come out of the same factory somewhere in China.

Anyway. If you got one you can easily open it up and start modifying it.

Hardware

the wheel is turned by a DC motor and the switch is triggered by the wheels fins
I’ve added a connector to the switch and the motor cables for quick connect

The functional principle of the feeder is rather simple:

  1. turn the feeder wheel
  2. take the micro-switch status in account – when it’s pressed down the wheel must be pushing against it
  3. turn it until the micro-switch is not pressed anymore
  4. turn some more until it’s pressed again

Simple. Since the switch-status is not known on power loss / reboot a calibration run is necessary (even with the factory electronics) every time it boots up.

After opening the feeder I’ve cut the two cables going to the motor as well as the micro-switch cables. I’ve added a 4-Pin JST-XH connector to both ends. So I can reconnect it to original state if desired.

These are all the parts needed:

I am using a Wemos D1 Mini and a couple of additional components apart from the prototype board:

A PN2222 NPN transistor, a rectifier diode 1N4007 and a 220 Ohm resistor.

I’ve connected everything according to this schematic I’ve drawn with Fritzing:

I’ve then prototyped away and put everything on the PCB. Of course with very limited solderig skill:

As you can see the JST-XH connector on Motor+Switch can now be connected easily to the PCB with all the parts.

Make sure you check polarity and that you did correctly hook up the motor and switch.

When done correctly the PCB (I’ve used 40mm x 60mm prototype pcb) and all cables will fit into the case. There’s plenty of room and I’ve put it to the side of it. I’ve also directly connected an USB cable to the USB port of the Wemos D1 Mini. As long as you put at least 1A into it it will all work.

Software

Since the Wemos D1 Mini sports an ESP8266 and is well supported by Arduino it was clear to me to use Arduino IDE for the software portion of this project.

Of course everything, from schematics to the sourcecode is available as open source.

To get everything running you need to modify the .ino file in the src folder like so:

Configuration

What you need to configure:

  • the output pins you have chosen – D1+D2 are pre-configured
  • WiFi SSID + PASS
  • MQTT Server (IP(+Username+PW))
  • MQTT Topic prefix

Commands that can be sent through mqtt to the /feed topic.

MQTT topics and control

There are overall two MQTT topics:

  • $prefix/feeder-$chipid/state
    This topic will hold the current state of the feeder. It will show a number starting from 0 up. When the feeder is ready it will be 0. When it’s currently feeding it will be 1 and up – counting down for every successfull turn done. There is an safety cut-off for the motor. If the motor is longer active than configured in the MaximumMotorRuntime variable it will shut-off by itself and set the state to -1.
  • $prefix/feeder-$chipid/feed
    This topic acts as the command topic to start / control the feeding process. If you want to start the process you would send the number of turns you want to happen. So 1 to 5 seems reasonable. The feeder will show the progress in the /state topic. You can update the amount any time to shorten / lengthen the process. On the very first feed request after initial power-up / reboot the feeder will do a calibration run. This is to make sure that all the wheels are in the right position to work flawlessly.

So if you want to make it start feeding 3 times:

mosquitto_pub -t house/stappenbach/feeder/feeder-00F3B839/feed -m 3

And if you want to see the state of the feeder:

mosquitto_sub -v -t house/stappenbach/feeder/feeder-00F3B839/state

All in all there are 3 of these going to be running in our household and the feeding is going to be controlled either by Alexa voice commands or through Node-Red automation.

An Introduction to D3.js

Browsers can do many things. It’s probably your main window into the vast internet. Lots of things need visualization. And if you want to know how it’s done, maybe do one yourself, then…

D3.js is a JavaScript library for manipulating documents based on data. D3 helps you bring data to life using HTML, SVG, and CSS. D3’s emphasis on web standards gives you the full capabilities of modern browsers without tying yourself to a proprietary framework, combining powerful visualization components and a data-driven approach to DOM manipulation.

D3.js

And to further learn what it’s all about, go to Amelia Wattenbergers blog and take a stroll:

So, you want to create amazing data visualizations on the web and you keep hearing about D3.js. But what is D3.js, and how can you learn it? Let’s start with the question: What is D3?

While it might seem like D3.js is an all-encompassing framework, it’s really just a collection of small modules. Here are all of the modules: each is visualized as a circle – larger circles are modules with larger file sizes.

An Introduction to D3.js

BlaspBerry v2

Have you ever wanted a full control over your communication tool ? #SnapOnAir #BlaspBerry v2. A true Qwerty computer KB. @Raspberry_Pi
zero W. @Quectel
3G cellular chip. #Lora RFM95 chip. All opensource.

pwav robot on Twitter

There’s a full twitter thread here. More pictures, more information.

And there’s a GitHub repository with some schematics, configurations and so on…

nodes – a new way to create with code

In Nodes you write programs by connecting “blocks” of code. Each node – as we refer to them – is a self contained piece of functionality like loading a file, rendering a 3D geometry or tracking the position of the mouse. The source code can be as big or as tiny as you like. We’ve seen some of ours ranging from 5 lines of code to the thousands. Conceptual/functional separation is usually more important.

Nodes.io

Nodes* is a JavaScript-based 2D canvas for computational thinking. It’s powered by the npm ecosystem and lives on the web. We take inspiration from popular node-based tools but strive to bring the visual interface and textual code closer together while also encouraging patterns that aid the programmer in the prototype and exploratory stage of their process.
*(not to be confused with node.js)

cross-platform NES emulator written in C#

XamariNES is a cross-platform Nintendo Emulator using .Net Standard written in C#. This project started initially as a nighits/weekend project of mine to better understand the MOS 6502 processor in the original Nintendo Entertainment System. The CPU itself didn’t take long working on it a couple hours here and there. I decided once the CPU was completed, how hard could it be just to take it to next step and do the PPU? Here we are a year later and I finally think I have the PPU in a semi-working state.

XamaiNES

If you ever wanted to start looking at and understand emulation this might be a starting point for you. With the high-level C# being used to describe and implement actual existing hardware – like the NES CPU:

Implementation of the Logical Shift Right opcode of the MOS6502 cpu

The author does the full circle and everything you’d expect from a simple working emulator is there:

a throw-away remote VNC linux desktop in a docker container

I am running most of my in-house infrastructure based on Docker these days…

Docker is a set of platform-as-a-service (PaaS) products that use operating-system-level virtualization to deliver software in packages called containers. Containers are isolated from one another and bundle their own software, libraries and configuration files; they can communicate with each other through well-defined channels.

All containers are run by a single operating-system kernel and are thus more lightweight than virtual machines.

Wikipedia: Docker

And given the above definition it’s fairly easy to create and run containers of things like command-line tools and background servers/services. But due to the nature of Docker being “terminal only” by default it’s quite hard to do anything UI related.

But there is a way. By using the VNC protocol to get access to the graphical user interface we can set-up a container running a fully-fledge Linux Desktop and we can connect directly to this container.

I am using something I call “throw-away linux desktop containers” all day every day for various needs and uses. Everytime I start such a container this container is brand-new and ready to be used.

Actually when I start it the process looks like this:

As you can see when the container starts-up it asks for a password to be set. This is the password needed to be entered when the VNC client connects to the container.

And when you are connected, this is what you get:

this is what you see after connecting to the desktop container by VNC

I am sharing my scripts and Dockerfile with you so you can use it yourself. If you put a bit more time into it you can even customize it to your specific needs. At this point it’s based on Ubuntu 18.04 and starts-up a ubuntu-mate desktop environment in it’s default configuration.

When you log into the container it will log you in as root – but effectively you won’t be able to really screw around with the host machine as the container is still isolating you from the host. Nevertheless be aware that the container has some quirks and is run in extended privileges mode.

Chromium will be pre-installed as a browser but you will find that it won’t start up. That’s because Chromium won’t start up if you attempt a start as root user.

The workaround:

“–no-sandbox” parameter for Chromium

Now get the scripts and container here and build it yourself!

housekeeping with NodeJS

When you are using or developing NodeJS applications and the Node Package manager (npm) over time a lot of old crusty libraries will accrue.

A lot means, a lot:

To have a chance to get on top of things and save space, try this:

npm i -g npkill 

By then using npkill you will get an overview (after a looong scan) of how much disk space there is to be saved.

Great tip!

an OS in your browser

So I leave this right here:

OS.js is an open-source JavaScript Web Desktop implementation for your browser with a fully-fledged window manager, Application APIs, GUI toolkits and filesystem abstraction.

It really does implement a lot of what an operating system UI and portions of the backends are supposed to be. It looks quite funky and there are applications to this. Of course it’s open source

I want all electron Apps to start existing there so I can call all of them with just a browser from anywhere.

If you want to give it a spin, click here:

artifact, noise removal and inpainting toolbox

Deep convolutional networks have become a popular tool for image generation and restoration. Generally, their excellent performance is imputed to their ability to learn realistic image priors from a large number of example images. In this paper, we show that, on the contrary, the structure of a generator network is sufficient to capture a great deal of low-level image statistics prior to any learning. In order to do so, we show that a randomly-initialized neural network can be used as a handcrafted prior with excellent results in standard inverse problems such as denoising, super-resolution, and inpainting. Furthermore, the same prior can be used to invert deep neural representations to diagnose them, and to restore images based on flash-no flash input pairs.
Apart from its diverse applications, our approach highlights the inductive bias captured by standard generator network architectures. It also bridges the gap between two very popular families of image restoration methods: learning-based methods using deep convolutional networks and learning-free methods based on handcrafted image priors such as self-similarity.

Deep Image Prior Paper

As usual there’s source code available to try out yourself. It even comes with a pre-configured docker jupyter notebook.

color assimilation grid illusion

The image [..] is a visual/artistic experiment playing with simultanous contrast resulting from other experiments these days. An over-saturated colored grid overlayed on a  grayscale image causes the grayscale cells to be perceived as having color.
The processing needed to create the above image happened along with unrelated but significant code improvements In the last couple of weeks. I have been visiting mitch – a prolific GIMP contributors for collaboration – and lots of progress has been – and is still – being made on babl, GEGL and GIMP.

original article
See the effect in a video

You can now play with this effect and experiment for yourself. Get Gimp and enjoy!