retrofit an old printer to be available on the network

In 2007 I had become proud owner of a Samsung ML-2010 mono laser printer. It’s done a great job ever since and I can recall changing the toner just once so far.

So you can tell: I am not a heavy printer user. Every so often I gotta print out a sheet of paper to put on a package or to fill out a form. A laser printer is the perfect fit for this pattern as it’s toner is not going-bad or evaporating like ink does in ink-printers.

So I still like the printer and it’s in perfect working condition. I’ve just recently filled up the toner for almost no money. But – but this printer needs to be physically connected to the computer that wants to print.

As the usage patterns have significantly changed in the last 12 years this printer needs to be brought into todays networked world.

Replacing it with a new printer is not an option. All printers I could potentially purchase are both more expensive to purchase and the toner is much more expensive to refill. No-can-do.

If only there was an easy way to get the printer network ready. Well, turns out, there is!

First let’s start introducing an opensource project: CUPS

CUPS (formerly an acronym for Common UNIX Printing System) is a modular printing system for Unix-like computer operating systems which allows a computer to act as a print server. A computer running CUPS is a host that can accept print jobs from client computers, process them, and send them to the appropriate printer.

Wikipedia

A good, cheap and energy-efficient way to run a CUPS host is a Raspberry Pi. I do own several first-generation models that have been replaced by much more powerful ones in the previous years.

So I’ve taken one Raspberry Pi and did the set-up steps: Installing the Raspberry Pi Print Server Software.

And now – what did I get?

I got a networked Samsung Laser Printer. No thrills, no problems at all.

the CUPS web interface
the printer shows up on Linux (Ubuntu here)
on iOS and macOS the printer magically appears
on Windows 10.

a wild Ma.K (Maschinen Krieger) appears

The franchise was started by Kow Yokoyama in the 1980’s. Yokoyama-san was a scratch-build modeller, artist and sculptor. Among his works he built machines of war that would fight in the 29th century, but took their visual cues from early 19th century weaponry and the early NASA space program. All his models were pieced together from numerous kits including armor, aircraft, cars and found objects (like ping pong balls).

Ma.K

Often described as WWII machinery in space, these kits are the perfect blend of sci-fi modelling with AFV weathering and finishing techniques…

There is also a longer article with high-resolution pictures here.

brain simulators

With recent announcements around human brain and brain-machine interface research like Neuralink the topic is seemingly seeing some more investments now.

As this whole topic is special to my heart I am interested in all things brain simulations. Thus here’s my personal “logbook entry” on the re-appearance of this topic:

This leads to one of the arguments for whole-brain simulation: it’ll help us solve the “biological imitation game,” a Turing test-like assay that pits digitally reconstructed brains against real ones. Iterations of the test help select increasingly more accurate models for a given task, which eventually become the most promising ideas for how specific biological networks operate. And because these models are based on mathematical equations, they could become the heart of next-generation AI.

Singularity Hub

There’s also a paper! – Unfortunately I cannot link directly to the paper as it is behind paywalls. Neuralink on the other side was so kind to publish open-access:

visualize baby sleep pattern

A visualization of my son’s sleep pattern from birth to his first birthday. Crochet border surrounding a double knit body. Each row represents a single day. Each stitch represents 6 minutes of time spent awake or asleep

Seung Lee on Twitter

No babies here. But I want such a blanket now.

augmented (reality) book cover

If you ever want to quickly explain what augmented reality could be to a person not knowing yet, you might want to use this (and other) use cases for a visual explanation:

I achieved this by separating the artwork and text into many individual layers, that I placed in receding layers of 3D depth, in a 3D program on the computer. And made sure everything outside the borders of the book is excluded, to give it the ‘portal’ effect.

Augmented Reality Book Cover by Alexander Wand

Tool: Partition Recovery and Undelete – Testdisk

Mass storage hardware breaks all the time. Sometimes it’s hardware that breaks, but sometimes it’s the software that breaks. If it’s the software (or own talent) that made the data go boom, TestDisk is a tool you should know about.

DISCLAIMER: If the data you are trying so recover is actually worth anything you might want to reserve to a professional data recovery service rather than trying to train-on-the-job.

Apart from the availability of pre-compiled packages for most operating systems you can also grab a bootable LiveCD when everything seems gone and lost.

The process itself is rather exciting (if you want the data back) and may require a fresh pair of pants upfront, throughout and after.

Thankfully there’s a great wiki and documentation of how to go about the business of data recovery.

TestDisk is powerful free data recovery software! It was primarily designed to help recover lost partitions and/or make non-booting disks bootable again when these symptoms are caused by faulty software: certain types of viruses or human error (such as accidentally deleting a Partition Table). Partition table recovery using TestDisk is really easy.

  • TestDisk can
    • Fix partition table, recover deleted partition
    • Recover FAT32 boot sector from its backup
    • Rebuild FAT12/FAT16/FAT32 boot sector
    • Fix FAT tables
    • Rebuild NTFS boot sector
    • Recover NTFS boot sector from its backup
    • Fix MFT using MFT mirror
    • Locate ext2/ext3/ext4 Backup SuperBlock
    • Undelete files from FAT, exFAT, NTFS and ext2 filesystem
    • Copy files from deleted FAT, exFAT, NTFS and ext2/ext3/ext4 partitions.

TestDisk has features for both novices and experts. For those who know little or nothing about data recovery techniques, TestDisk can be used to collect detailed information about a non-booting drive which can then be sent to a tech for further analysis. Those more familiar with such procedures should find TestDisk a handy tool in performing onsite recovery.

And if you give up, think about writing an article of you actually digging deeper:

Wireless Network Mapping – data source and data sink

When you work with wireless networks and you do programming and mobile app development that works with things like user location you might find this useful.

Take thousands of users and you’ve got the worlds wifi networks mapped…

WiGGLE (Wireless Geographic Logging Engine) is a project which takes wireless network data + location and puts it into a big database. On top of storage it’s giving you access to that data.

We consolidate location and information of wireless networks world-wide to a central database, and have user-friendly desktop and web applications that can map, query and update the database via the web.

https://wigle.net/faq

So what’s my use-case? Apart from the obvious I will make use of this by finding out more about those fellow travelers around me. Many people probably to the same as me: Travel with a small wifi / 4g access point. Whenever this accesspoints shows up in scans the path will be traceable.

I am curious to see which access point around me is in the million-mile club yet…

WiFi QR Code Generator

Whenever we arrive at a place that we have not been before it is important to get properly connected to the internet.

Finding wifi SSIDs and typing passwords is tedious and prone to errors. There is an easier way of course!

The owner of the wireless network can generate a QR code that you can easily take a photo of and your phone will automatically prompt you to log into the wireless network without you having to type anything.

On your phone it looks like this:

To generate these QR codes that contain all information for visitors/new users to connect this simple tool / online generator can be used:

Ever wanted to create a cool QR code for your guests? But never wanted to type in your WiFi credentials into a form that submits them to a remote webserver to render the QR code? QiFi for the rescue! It will render the code in your browser, on your machine, so the WiFi stays as secure as it was before (read the code if you do not trust text on the internet :-))!

Qifi.org

Don’t worry: your access point information is not transferred over the internet. As this is open source at the time of writing the data was held in HTML 5 local storage on the local browser only and not transferred out.

electronic firecracker: Chuwi Hi10 AIR Tablet

The Android tablets I am using for my kitchen scale display and for myfitnesspal data-entry are aging quite bad and apart from the near-display death of one of the tablets both are not supported and updated anymore.

Using them therefore poses an increasing risk. After one of them almost died on me I was determined to replace them both. Looking at alternatives at the lowest possible price quickly showed that I am not going to get another Android tablet.

Instead I was ready to give a chinese company a chance:

I ordered it on 24th of June and it was delivered today. All in all I’ve paid 136 Euro for the tablet and 45 Euro for the keyboard attachement.

Despite the ridiculously low price this thing is quite impressive. It’s sporting a fast-enough Intel Atom processor with 1.4 ghz and 4 Gbyte of RAM. The 64 Gb of solid-state storage where quickly upgraded by an additional 400 Gb MicroSD card for local data storage.

As of writing this it’s still installing and updating the Windows 10 to 1903 but so far I am beyond impressed.

I’ll write more about the device when I’ve had more time to use it. One word for the keyboard attachement: the keyboard is good-enough. Not great but better than for example that on the Pinebook. The touchpad is very small but works – the thing has a Touchscreen anyway.

retrofuturism sketches

On twitter and artstation I’ve came across Sheng Lam. An artist with a quite fascinating way of sketching. Take a look and be inspired:

Concept artist with AAA experience. Currently working on Star Citizen at Cloud Imperium Games. Mostly draws and likes to eat delicious food.

Sheng Lam on ArtStation

making ICs at home

Try to wrap your head around this: There are people out there that take the term “Maker” to new levels. People Like Sam Zeloof. He went out and created his very own integrated circuit designs and then he built them. Like the actual silicon, the die, the bonded chip, the IC. The real thing.

Be inspired:

I am very excited to announce the details of my first integrated circuit and share the journey that this project has taken me on over the past year. I hope that my success will inspire others and help start a revolution in home chip fabrication. When I set out on this project I had no idea of what I had gotten myself into, but in the end I learned more than I ever thought I would about physics, chemistry, optics, electronics, and so many other fields. Furthermore, my efforts have only been matched with the most positive feedback and support from the world; I owe a sincere thanks to everyone who has helped me, given me advice, and inspired me on this project. Especially my amazing parents, who not only support and encourage me in any way they can but also give me a space to work in and put up with the electricity costs… Thank you!

Sam Zeloof

Decoding history, the hard way (and with machine learning)

Imagine you’ve got this ancient piece of technology in front of you. You clearly understand how the hardware works and you are even able to emulate the hardware on your modern-world computer.

Unfortunately hardware is only one half of the story. Software is the other half. And software at this time of the past was burned into chips which do not easily give their secret software away.

But let’s start with the hardware:

The IBM 5100 Portable Computer is a portable computer (one of the first) introduced in September 1975, six years before the IBM Personal Computer. It was the evolution of a prototype called the SCAMP (Special Computer APL Machine Portable) that was developed at the IBM Palo Alto Scientific Center in 1973. In January 1978, IBM announced the IBM 5110, its larger cousin, and in February 1980 IBM announced the IBM 5120. The 5100 was withdrawn in March 1982.

When the IBM PC was introduced in 1981, it was originally designated as the IBM 5150, putting it in the “5100” series, though its architecture was not directly descended from the IBM 5100.

And now on to the software:

The IBM 5100 portable computer came with some of its built-in programs stored in a read-only memory called the “non-executable ROS”. (ROS = “read-only storage”.) In contrast with the “executable ROS”, which supplies instructions to the 5100’s processor directly, the non-executable ROS is accessed using sequential I/O operations, a bit like a tape.

Most notably, the non-executable ROS holds the interactive interpreters for the APL and BASIC programming languages. These are not “native” 5100 programs but were expressed instead in System/370 mainframe and System/3 minicomputer machine code respectively. The 5100 runs emulator programs for those computers in order to host the interpreters, so perhaps it’s just as well that the non-executable ROS is non-executable.

DATA

So this write-up is all about how the bits where pushed to the screen and recorded as pictures of the said screen. The characters in these pictures then where analyzed and with the help of machine learning the data could be successfully extracted. It is mind-boggling. And it is all on Github.

Tesla battery survey

If there is any discussion or argument about electric mobility these days the topic of range and battery-aging is coming up rather quick.

Every once in a while you also hear these awesome stories about electric cars achieving total-driven-distances outrageously huge compared to combustion engine cars…

But what is it then, how does a battery in an electric car age over time and mileage? Given that car manufacturers seem to settle on a ca. 150.000km total-driven-miles baseline for giving a battery-capacity percentage guarantee. Something like…

The future owners of ID. models won’t need to worry about the durability of their batteries either, as Volkswagen will guarantee that the batteries will retain at least 70 per cent of their usable capacity even after eight years or 160,000 kilometres.

Volkswagen Newsroom

or

Model S and Model X – 8 years (with the exception of the original 60 kWh battery manufactured before 2015, which is covered for a period of 8 years or 125,000 miles, whichever comes first).

Model 3 – 8 years or 100,000 miles, whichever comes first, with minimum 70% retention of Battery capacity over the warranty period.

Model 3 with Long-Range Battery – 8 years or 120,000 miles, whichever comes first, with minimum 70% retention of Battery capacity over the warranty period.

Tesla

So. Guarantees are one thing. Reality another. There’s an interesting user-driven survey set-up where Tesla owners can hand in their cars data thus participate in the survey.

And it yields results (getting updated as you read…):

In a nutshell: It seems there is a good chance that your Tesla car might have an above 90% original-specified-battery-capacity after the guaranteed 100.000 miles and even after 150.000 miles (241.000km)…

Good news that is! Given that the average household will do about or less than 20.000 km/year it would mean over 12 years of use and the car still would hold 90% of battery charge. The battery being the most expensive single component on an electric car this is extremely good news as it’s unlikely that the battery will be the reason for the car to be scraped after this mileage.

more small projectors coming

Good news everyone!

There are new micro-projectors coming and they are looking good. After the first availability of really small and low-power but enough-light LED projectors (see here) manufacturers have apparently added a laser to the equation.

It is said that…

Unlike traditional projectors that constantly need to be focussed, the Nebra AnyBeam picture is always perfect. You can project onto curved or irregular surfaces with ease – perfect if you want to use it on the fly, or if you want to try your hand at a bit of projection mapping!

This thing will be available, according to the Kickstarter, as a all-in-one package with power and HDMI inputs. It’s got 720p inputs. Well. Well really?

And it will be available to the maker market as a RaspberryPi Hat…

always go for double redundancy

As the replacement drive for yesterdays hard drive crash was put into place the storage array started to re-silver the newly added empty drive. This process takes a while – about 8 hours for this particular type of array.

Interestingly just 2 minutes into the process another drive dropped a bombshell:

Apparently disk 8 holds together it’s business so far but dropped a couple of parity errors into the equation.

This is bad news. But so far science still is on my side of things and no data has been lost.

But now redundancy is down completely. There’s no redundancy for now – until the replaced hard disk is fully integrated. My policy for these sized drives demands a minimum of 2-disk redundancy and for today this policy saved the day (data).

Actually let’s dive a bit into what it’s doing there to achieve 2-disk redundancy:

Synology Hybrid RAID (SHR) is an automated RAID management system from Synology, designed to make storage volume deployment quick and easy. If you don’t know much about RAID, SHR is recommended to set up the storage volume on your Synology NAS.

You will learn different types of SHR and their advantages/disadvantages over classic single disk/RAID setups. In the end, you will be able to choose a type of RAID or SHR for the best interest of your storage volume. This article assumes that as the admin of your Synology NAS, you are also an experienced network administrator with a firm grasp of RAID management.

Synology Hybrid Raid

So you trade data redundancy and safety for useable disk space. Here this is compared to traditional RAID 5:

disk down, rinse and repeat.

After the sudden death of a hard drive in one of the house’ storage arrays (after 55997 hours of service) beginning of this month it has happened again:

With less than half the runtime of the previously dead disk this one is an early failure. Well within the warranty. Therefore the disk is already en route to be replaced by an RMA (Western Digital RMA process so far is spotless!)

Anyhow: This was a 4 TB drive. It’s in an array with 2-disk redundancy and 8 other drives. So the array still is operating with redundancy right now. Additionally a full backup exists as well as a hot-standby (but slower) offsite mirror.

I am quite confident to not loose data. But this raid-sync is going to take a bit longer. As drives get bigger, syncs get longer.

make linux fast (unsecure) again

The CPU/hardware related bugs surfacing the last couple of years have mostly been fixed by adjusting the software that is run. Sometimes only by disabling certain features of a CPU or patching the microcode in the CPU itself.

The issue with this is that by fixing these issues features got disabled and workarounds had been introduced that lowered performance. Dramatically so for some use-cases.

By how much? Well it really depends on your CPU and use-cases. But maybe you want to try yourself. If you want to know the most current parameters to pass to your kernel on boot-up to disable all the performance impacting fixes, go here:

It is not recommended to have this in productive use – as you can imagine. Those bugs where fixed for a reason.

Thanks for 55997 hours of continuous service

Every once in a while a hard drive fails in our house. Since all is setup to tolerate one or more failed drives no data was lost with this incident.

This drive especially gives reason to look back as it is more old with more than 6 years of continuously being powered up.

Super Urban Intelligent CArd

Suica (スイカ Suika) is a rechargeable contactless smart card, electronic money used as a fare card on train lines in Japan, launched on November 18, 2001. The card can be used interchangeably with JR West’s ICOCA in the Kansai region and San’yō region in Okayama, Hiroshima, and Yamaguchi Prefectures, and also with JR Central’s TOICA starting from spring of 2008, JR Kyushu’s SUGOCA, Nishitetsu’s Nimoca, and Fukuoka City Subway’s Hayakaken area in Fukuoka City and its suburb areas, starting from spring of 2010. The card is also increasingly being accepted as a form of electronic money for purchases at stores and kiosks, especially within train stations. As of October 2009, 30.01 million Suica are in circulation.

https://en.wikipedia.org/wiki/Suica

This time around we really made use of electronic payment and got around using cash whenever possible.

There where only a few occasions when we needed the physical credit card. Of course on a number of tourist spots further away from Tokyo centre cash was still king.

From my first trip to Japan to today a lot has changed and electronic payment was adopted very quickly. Compared to Germany: Lightning fast adoption in Japan!

The single best thing that has happened recently in this regard was that Apple Pay got available in Germany earlier this year. With the iPhone and Watch supporting SUICA already (you can get a card on the phone/watch) the availability of Apple Pay bridged the gap to add money to the SUICA card on the go. As a visitor to Japan you would mostly top up the SUICA card in convenience stores and train stations and mostly by cash. With the Apple Pay method you simply transfer money in the app from your credit card to the SUICA in an instant.

This whole electronic money concept is working end-2-end in Japan. Almost every shop takes it. You wipe your SUICA and be done. And not only for small amounts. Everything up to 20.000 JPY will work (about 150 Euro).

And when you run through a train station gate to pay for your trip it you hold your phone/watch up to the gate while walking past and this is it in realtime screen recorded:

I wish Germany would adopt this faster.

Oh, important fact: This whole SUICA thing is 100% anonymous. You get a card without giving out any information. You can top it up with cash without any link to you.

EFI boot app in C#

Zero-Sharp is using the CoreRT runtime to very impressively demonstrate how to get down to bare-metal application operation using C#. It compiles programs into native code…

Everything you wanted to know about making C# apps that run on bare metal, but were afraid to ask:

A complete EFI boot application in a single .cs file.

Michal Stehovsky on Twitter

This is seriously impressive and the screenshot says it all:

a very cool “Hello World“.

digital signage with the RaspberryPI

We all know this situation: We have huge screens around and want them to become digital signs that display all sorts of information automatically – maybe even video.

Back in 2012 I already had the need and just recently in an entirely different context the same requirement crossed my way.

the panic status board

To achieve this kind of digital-signage you can go the easy way and utilize a service called info-beamer. You can either take dedicated hardware you purchase just for the cause. Or…

Or you can take a RaspberryPi and Display you already got and repurpose them.

With the ready-made SD card image for the Pi you simply boot up the Pi, make Internet available to it and use the info-beamer dashboard to onboard the Pi there with the PIN shown by the Pi.

The next thing you know is that you can send content from the web dashboard on info-beamer to the Pi.

idea: in-flight convertible mini-quadcopter (add wings!)

About a year ago there were some very interesting reports about a german inventor and his invention: a highly futuristic, transforming smartphone airbag.

It would be attached to your phone and when you drop it, it would automatically deploy and dampen the impact.

Like so:

Impressive, right? There’s now a Kickstarter campaign behind this to deliver it as a product. All very nice and innovative.

I have no usue of a smartphone airbag of some sort. But hear me out on my train of thought:

I do partake in the hobby of quadcopter flying. I’ve built some myself in the past.

Now these quadcopters are very powerful and have very short flight times due to their power-dynamics. 4-5 Minutes and you’ve emptied a LiPo pack.

Model airplanes, essentially everything with wings, flys much much longer.

My thought now: Why not have a convertible drone.

When the pilot wants a switch could be flipped and it would convert a low-profile quadcopter to a low-profile quadcopter with wings. Similar to how the above mentioned smartphone “airbag”.

I don’t know anything about mechanics. I have no clue whatsoever. So go figure. But what I do know: the current path of the mini-quad industry is to create more powerful and bigger “mini”-quadcopters. And this is a good direction for some. It’s not for me. Having a 10kg 150km/h 50cm projectile in the air that also delivers a 1kg Lithium-Polymer, highly flammable and explosion-ready battery pack does frighten me.

Why not turn the wheel of innovation into the convertible-in-air-with-much-longer-flight-times direction and make the mini-quadcopters even more interesting?

Digital Daily Routine as an Experiment – “Digitaler Alltag als Experiment”

Last week we were approached by Prof. Dr. Nicole Zillien from Justus-Liebig-University in Gießen/Germany. She explained to us that she currently is working on a book.

In this book an empirical analysis is carried out on “quantified-self” approaches to real life problems.

With the lot of information and data we had posted on our personal website(s) like this blog and the “loosing weight” webpage apparently we qualified for being mentioned. We were asked if it would be okay to be named in the book or if we wanted to be pseudonymized.

Since everything we have posted online and which is publicly accessible right now can and should be quoted we were happy to give a go-ahead. We’re publishing things because we want it to spur further thoughts.

It will be out at the end of 2019 / beginning of 2020. As soon as it is out we hope to have a review copy to talk about it in this blog once again.

We do not know what exactly is being written and linked to us – we might as well end up as the worst example of all time. But well, then there’s something to learn in that as well.

IoP – the internet of pets – predictive maintenance of a cat

In the interesting field of IoT a lot of buzz is made around the predictive maintenance use cases. What is predictive maintenance?

The main promise of predictive maintenance is to allow convenient scheduling of corrective maintenance, and to prevent unexpected equipment failures.

The key is “the right information in the right time”. By knowing which equipment needs maintenance, maintenance work can be better planned (spare parts, people, etc.) and what would have been “unplanned stops” are transformed to shorter and fewer “planned stops”, thus increasing plant availability. Other potential advantages include increased equipment lifetime, increased plant safety, fewer accidents with negative impact on environment, and optimized spare parts handling.

Wikipedia

So in simpler terms: If you can predict that something will break you can repair it before it breaks. This improvse reliability and save costs, even though you repaired something that did not yet need repairs. At least you would be able to reduce inconveniences by repairing/maintaining when it still is easy to be done rather than under stress.

You would probably agree with me that these are a very industry-specific use cases. It’s easy to understand when it is tied to an actual case that happened.

Let me tell you a case that happened here last week. It happened to Leela – a 10 year old white British short hair lady cat with gorgeous blue eyes:

Ever since her sister had developed a severe kidney issue we started to unobtrusively monitor their behavior and vital signs. Simple things like weight, food intake, water intake, movement, regularities (how often x/y/z).

I’ve built hardware to allow us to do that in the most simple and automated way. In the case of getting to know their weight we would simply put the kitty litter box on a heavily modified persons scale. I wrote about that already back int 2016.

When Leela now visits her litter box she is automatically weighed and it’s taken note that she actually used it.

A lot of data is aggregated on this and a lot of things are being done to that data to generate indications of issues and alerts.

This alerted us last weekend that there could be an issue with Leelas health as she was suddenly visiting the litter box a lot more often across the day.

We did not notice anything with Leela. She behaved as she would everyday, but the monitoring did detect something was not right.

What had happened?

The chart shows the hourly average and daily total visits to the litterbox.

On the morning of March 9th Leela already had been to the litter box above average. So much above average that it tripped the alerting system. You can see the faded read area in the top of the graph above showing the alert threshold. The red vertical line was drawn in by me because this was when we got alerted.

Now what? She behaved totally normal just that she went a lot more to the litter box. We where concerned as it matched her sisters behavior so we went through all the checklists with her on what the issue could be.

We monitored her closely and increased the water supplied as well as changed her food so she could fight a potential bladder infection (or worse).

By Monday she did still not behave different to a degree that anyone would have been suspicious. Nevertheless my wife took her to the vet. And of course a bladder infection was diagnosed after all tests run.

She got antibiotics and around Wednesday (13th March) she actually started to behave much like a sick cat would. By then she already was on day 3 of antibiotics and after just one day of presumable pain she was back to fully normal.

Interestingly all of this can be followed up with the monitoring. Even that she must have felt worse on the 13th.

With everything back to normal now it seems that this monitoring has really lead us to a case of “predictive cat maintenance”. We hopefully could prevent a lot of pain with acting quick. Which only was possible through the monitoring in place.

Monitoring pets is seemingly becoming a thing – which lead to my rather funky post title declaration of the “Internet of Pets”. I know about a certain Volker Weber who even wrote in the current c’t magazine about him monitoring his dogs location.

Health is a huge topic for the future of devices and gadgets. Everyone will casually start to have more and more devices in their daily lifes. Unfortunately most of those won’t be under your own control if you do not insist on being in control.

You do not have to build stuff yourself like I did. You only need to make the right purchase decisions according to things important to you. And one of these things on that checklist should be: “am I in full control of the data flow and data storage”.

If you are not. Do not buy!

By coincidence the idea of having the owner of the data in full control of the data itself is central to my current job at MindSphere. With all the buzz and whistles around the Industry IoT platform it all breaks down to keep the actual owner of the data in control and in charge. A story for another post!

something is coming up…

Since 2011 we’ve got this Boogie Board in the household. It’s simply a passive LCD panel on which you can write with a plastic pen. When you do you’re interacting with the liquid crytals and you switch their state. So what was black becomes white.

So we got this tablet and it’s magnetically pinned to our fridge. And whenever we’ve booked the next trip we’re crossing off days by coloring them in a grid.

How do you do such countdowns?

and then there’s Chrome OS.

I recently wrote about how I am using ThinClients in our house to always have a ready-to-use working environment that get’s shared across different desks and work places.

To complete the zoo of devices I wanted to take the chance and write about another device we’re using when the purpose fits: ChromOS devices.

A little bit over a year ago I was given a HP Chromebook 11 G5 and this little thing is in use ever since.

The hardware itself is very average and works just right. The only two things that could be better are the display and the trackpad. With the trackpad you can help yourself with an external mouse.

The display works for the device size but the resolution being 1366×768 is definitely a limiting factor for some tasks.

What is not a limiting factor, astonishingly, is the operating system. I did not have any expectations at all when I first started using the Chromebook but everything just fell into place as expected. A device with almost no local storage and everything on the google cloud as well as a device that you can simply pick up and start using with just your google account may not sound crazy innovative. But let me tell you: if you start living that thin client, cloud stored life these Chrome OS devices hit the spot perfectly.

Everything updates in the background and as long as you are okay with web based applications or Android based applications you are good to go.

being productive?

Did I miss anything functionwise? Yes. At the beginning there was no real shell or Linux tools available for Chrome OS natively. This has changed.

Chrome OS comes with linux inside and exposed now.

Would I buy another one or do I recommend it and for whom? I would buy another one and I would recommend it for certain audiences.

I would recommend it for anyone who does not need to game anything not available in the Google Playstore – anything that can be done on the web can be done with the Chromebook. And as long as there is not the requirement of anything native or higher-spec that requires you to have “Windows-as-a-hobby” or a beefy MacOS device sitting around I guess these inexpensive Chrome OS devices really have their niche.

For kids – I guess this would make a great “my-first-notebook” as it works when you need it and does not lock you in too much if you wanted to start exploring. But then again: what do I know – I do not have kids.

“kachung” + shutter sound

When you take a picture with an iPhone these days it does generate haptic feedback – a “kachung” you can feel. And a shutter sound.

Thankfully the shutter sound can be disabled in many countries. I know it can’t be disabled on iPhones sold in Japan. Which kept me from buying mine in Tokyo. Even when you switch the regions to Europe / Germany it’ll still produce the shutter sound.

Anyway: With my iPhone, which was purchased in Germany, I can disable the shutter sound. But it won’t disable the haptic “kachung”.

look ma! no mirror! (yes this is an iPhone 6)

It’s interesting that Apple added this vibration to the activity of taking a picture. Other camera manufactures go out of their way to decouple as much vibration as possible even to the extend that they will open the shutter and mirror in their DSLRs before actually making the picture – just so that the vibration of the mirror movement and shutter isn’t inducing vibrations to the act of taking the picture.

With mirror less cameras that vibration is gone. But now introduced back again?

Am I the only one finding this strange?

wireless mesh network

Since AVM has started to offer wireless mesh network capabilities in their products through software updates I started to roll it out in our house.

Wireless mesh networks often consist of mesh clients, mesh routers and gateways. Mobility of nodes is less frequent. If nodes constantly or frequently move, the mesh spends more time updating routes than delivering data. In a wireless mesh network, topology tends to be more static, so that routes computation can converge and delivery of data to their destinations can occur. Hence, this is a low-mobility centralized form of wireless ad hoc network. Also, because it sometimes relies on static nodes to act as gateways, it is not a truly all-wireless ad hoc network.

Wikipedia

With the rather complex physical network structure and above-average number of wireless and wired clients the task wasn’t an easy one.

To give an impression of what is there right now:

So there’s a bit of almost everything. There’s wired connections (1Gbit to most places) and there is wireless connections. There are 5 access points overall of which 4 are just mesh repeaters coordinated by the Fritz!Box mesh-master.

There’s also powerline used for some of the more distant rooms of the mansion. All in all there are 4 powerline connections all of them are above 100 Mbit/s and one even is used for video streaming.

All is managed by a central Fritz!Box and all is well.

Like without issues. Even interesting spanning-tree implementations like from SONOS are being properly routed and have always worked without issues.

The only other-than-default configuration I had made to the Fritz!Box is that all well-known devices have set their v4 IPs to static so they are not frequently switching around the place.

How do I know it works? After enabling the Mesh things started working that have not worked before. Before the Mesh set-up I had several accesspoints independently from each other on the same SSID. Which would lead to hard connection drops if you walked between them. Roaming did not work.

With mesh enabled I’ve not seen this behavior anymore. All is stable even when I move actively between all floors and rooms.